Tap for spoiler

The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.

  • CatZoomies@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    2 months ago

    There’s too many words in this meme that’s making me dizzy from all your fancy science leechcraft, wizard.

    I reject your reality and substitute my own: the feather falls faster. It’s more streamlined than the bowling ball, and thus it slips through the vacuum much faster and does hit the ground and stay on the ground, I think. The ball will bounce at least once, maybe even three times. On each bounce, parts of it probably break off, which change the weight. Thankfully those broken pieces won’t hurt anyone because they’re sucked up by the vacuum. Thus, rendering your dungeon wizard spells ineffective against me.

  • pumpkinseedoil@mander.xyz
    link
    fedilink
    English
    arrow-up
    0
    ·
    2 months ago

    Why your spoiler is wrong:

    The gravitational force between two objects is G(m1 m2)/r²

    G = ~6.67 • 10^-11 Nm²/kg²

    m1 = Mass of the earth = ~5.972 • 10^24 kg

    m2 = Mass of the second object, I’ll use M to refer to this from now on

    r = ~6378 • 10^3 m

    Fg = 6.67 • 10-11 Nm²/kg² • 5.972 • 1024 kg • M / (6378 • 10^3 m)² = ~9.81 • M N/kg = 9.81 • M m kg / s² / kg = 9.81 • M m/s² = g • M

    Since this is the acceleration that works between both masses, it already includes the mass of an iron ball having a stronger gravitational field than that of a feather.

    So yes, they are, in fact, taking the same time to fall.

    • red@lemmy.zip
      link
      fedilink
      English
      arrow-up
      0
      ·
      2 months ago

      the fact that you got upvoted, you clearly said force on both objects is gM and the feather or ball will move with g BUT earth will move with gM/m1 which is more in case of ball, and no its not acceleration between mases, its the force experiencec by both mases so, fg=m1.a

      • barsoap@lemm.ee
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        2 months ago

        BUT earth will move with gM/m1

        No. Multiplication is associative, you can switch the masses around as you please, nowhere in the formula does it say “the greater mass” or “the smaller mass” you could just as well re-arrange the formula and come up with “earth moves with gm1/M”. Last but not least there’s only one force acting on both objects… and gM/m1 is neither a speed nor a force. G * 100kg / 20kg is 5G. Measured in Nm²/kg² which is the same we started with because the two kg cancel each other out.

        They both fall towards their shared centre of gravity. It’s this “the earth revolves around the sun” thing again, no it doesn’t, they both revolve around their shared centre of gravity (which, yes, is within the sun but still makes it wobble). That centre is very far away from the ball and very close to the earth and both are moving at the same speed towards it (because acceleration doesn’t depend on mass), blip to the next frame of the simulation now the centre of gravity moved towards the ball, next frame still closer to the ball, that is the reason both reach it at the same time, not because one is faster than the other.

        …or so it would be, if the shared centre of gravity of ball and earth wouldn’t lie within the earth so they don’t actually both reach it, the earth is in the way, the rest of the acceleration is turned into static friction: Because they both are still falling even when in contact. But really that complication only exists because they have volumes which is why I factored it out from the rest of the reasoning.

        • red@lemmy.zip
          link
          fedilink
          English
          arrow-up
          0
          arrow-down
          1
          ·
          edit-2
          2 months ago

          all that is only brain-rot statements with no technical meaning. lemme make this completly clear

          mf= mass of feather mb= mass of ball me= mass of earth ae=accelaration of earth fg=force experienced by both

          now in case of feather

          force on earth is what? yes thats fg =G.mf.me/r^2

          now thats the net force on earth, now what is newtons law? me.ae=G.mf.me/r^2

          we get ae=G.mf/r^2

          similarly in case of ball ae=G.mb/r^2

          and accelaration of earth is clearly more in case of ball, and yes this is accelaration in non inertial frame study newtons laws of motion again if you didnt know, so your second paragraph is utter nonsense

          instead of nonsense brainrot statements like 'Multiplication is associative, you can switch the masses around as you please, nowhere in the formula does it say “the greater mass” or “the smaller mass” you could just as well re-arrange the formula and come up with “earth moves with gm1/M” tell me where in equations you think i am wrong

    • NoneOfUrBusiness@fedia.io
      link
      fedilink
      arrow-up
      0
      arrow-down
      1
      ·
      2 months ago

      Uh… That’s not how that works. The distance between two objects changes with acceleration a1-a2 where object 1 moves with acceleration a1 and object 2 a2 (numbers interchangeable). In the bowling ball’s case a2 is the same but a1 is bigger in the negative direction so the result is that the bowling ball falls faster.